441. Emission Spectra of Radicals from Dimethylnaphthalenes.

By A. T. WATTS and S. WALKER.

Electronic emission spectra have been obtained in the 5800-6600 Å region from the decomposition products of seven dimethylnaphthalenes, and radicals of the form CH₃·C₁₀H₆·CH₂• have been detected.

PREVIOUS work has indicated that the benzyl radical is produced from mild discharges through n-alkylbenzenes.¹ In addition, an examination of the emission spectra from 14 dialkyl-substituted benzenes in a Tesla discharge showed that radicals² of the form o-, m-, and p-CH₃·C₆H₄·CH₂· are formed from compounds of the type o-, m-, and p-CH₃·C₆H₄R, where R = H, or n-alkyl.

This Paper is concerned with extending the work to the examination of the spectra of the radicals formed from the dimethylnaphthalenes.

EXPERIMENTAL

Some compounds were kindly supplied by B.P. Ltd. and by Imperial Chemical Industries Limited. The others were obtained commercially. Purification was effected by fractional distillation in a column of the type described by Ray³ or by recrystallisation in a suitable solvent.

The work proved to be very much more difficult than that on the substituted benzenes mainly because of the lower volatility of the naphthalenes and the amount of vapour being fairly critical. This was overcome by use of a furnace situated beneath the discharge tube and an external heating coil wound around the sample container. The surrounding of the windows of the tube was also heated electrically. In all other respects the technique was identical to that of the earlier work.

A Hilger F/4 spectrograph was used to record the spectra on Ilford long range spectrum or Astra III plates. Exposure times varied between 1 and 7 hr.

RESULTS

The spectra obtained consisted of 4-6 bands which were generally diffuse. Where possible the wavelengths of the bands were determined from a microdensitometer trace. The accuracy of the measurements is about ± 15 or even ± 20 cm.⁻¹ for the most diffuse bands. The emission spectra data are listed in Table 1 with vibrational frequency assignments.

- ¹ Watts and Walker, J., 1962, 4233. ² Bindley, Watts, and Walker, Trans. Faraday Soc., 1962, **58**, 849.
- ³ Ray, Rev. Sci. Instr., 1957, 28, 200.

Emission spectra from a discharge through dimethylnaphthalenes and tentative assignment of vibrational frequencies (cm. $^{-1}$).

			9	-	•	,		
Wave-		Difference	•	Wave-		Difference		
number	In-	from $(0,0)$	1	number	In-	from (0,0)		
(vac.)	tensity	band	Assignment	(vac.)	tensity	band	Assignment	
Radical from 1.2-dimethylnaphthalene				Radical from 1,7-dimethylnaphthalene				
17 011	10	, 0	(0, 0) band	17.060 *	2	412	0 + 412	
16 546	ĨŘ	465	0 - 465	16.648	10	0	(0,0)	
16 086	š	925	0 - 925	16.216	7	432	0 - 432	
15.645	7	1366	0 - 1366	15.744 *	2	904	0 - 904	
10,010				15.315	4	1333	0 - 1333	
Radical from 1.3-dimethylnaphthalene				15,101 *	ī	1547	0 - 1547	
17.207 *	i	447	0 + 447					
17.031 *	$\overline{2}$	271	0 + 271	Ra	ndical fro	m 2,3-dimethy	Inaphthalene	
16,760	10	0	(0,0)	16 898	10	0	(0.0)	
16,242	5	518	0 - 518	16 739 *	10	90	0 96	
15,793 *	2	967	0 — 967	16 978	Â	450	0 = 30 0 = 450	
15,452	7	1308	0 - 1308	15 804	2	934	0 934	
				15,034	8	1388	0 1388	
Ra	idical fro	m 1,5-dime	thylnaþhthalene	10,110	0	1000	0 1000	
16.774	10	0	(0.0)	Ra	idical fro	m 2.6-dimethy	Inaphthalene	
16.579 *	1	195	0 - 190	16 816	5	0	(0 0)	
16.254	10	520	0 - 520	16 392	š	424	0 - 424	
10.050 +	- •	801	(0 - 701)	16 047 *	ĭ	767	0 - 767	
16,073 *	z	701	10 - 520 - 190?	15 404	10	1412	0 - 1412	
15,793 *	2	981	0 - 981	10,101	-0		• ••••	
1= 400	0	1996	$\int 0 - 522 - 4 \times 190?$					
10,400	0	1260	10 - 1286					
D.	dical fro	m 16 dima	thulmable thalama					
17 001	<i>anca</i> 170	m 1,0- <i>aime</i>	inyinupninuiene					
17,031	4	382	0 + 382					
10,048	10	410	(0,0)	*	Band c	entre esti <mark>mat</mark>	ed visually.	
10,229	7	419	0 - 419				-	
10,470	Z	1172	0 - 1172?					
15,319	8	1329	0 - 1329					

DISCUSSION

Characteristic vibrational frequencies of disubstituted naphthalenes have been listed in Table 2 with a view to determining the positions of the (0,0) bands and assignments of vibrational frequencies of the radicals from the dimethylnaphthalenes. Work on both the monoalkyl-¹ and dialkyl-substituted² benzene radicals had shown that on the whole there was good correspondence between the vibrational frequencies of the radical and that of the parent molecule.

It may be expected that the ground-state vibrational frequencies (ω'') obtained by the phosphorescence method would link up with those determined by the discharge method; likewise, the ω' values obtained from the latter may show some correspondence with those from ultraviolet absorption in a rigid glass at 77° κ , even though different electronic states are involved. Thus, from Table 2 characteristic ground-state frequencies may be of the order: 500, 780, 950, 1100, 1370, and 1540 cm.⁻¹ The frequency about 500 cm.⁻¹ is of particular interest as it is a characteristic carbon skeletal motion and is found in monosubstituents of naphthalene, for example:

α-D 510 (ref. 4), α-Me 515 (ref. 5), α-F 526, α-Cl 515, α-Br 511 cm.⁻¹ (ref. 6)

β-D 509 (ref. 4), β-Me 521 (ref. 5), β-F 464, β-Cl 516, β-Br 519 cm.⁻¹ (ref. 6)

Furthermore, it may be correlated with the total symmetric vibration of 512 cm.⁻¹ in the naphthalene molecule.⁵ The corresponding frequency in the excited electronic state

⁴ Goubeau, Luther, Feldmann, and Brandes, Chem. Ber., 1953, 86, 214.

⁵ Luther and Hampel, Z. phys. Chem., 1954, 202, 390.

⁶ Ferguson, J., 1954, 304.

TABLE 2.

Excited electronic state and ground-state vibrational frequencies (ω' and ω'' , respectively) in cm.⁻¹ of disubstituted naphthalenes obtained by phosphorescence ⁷ (at 77° κ), Raman methods,⁴ and ultraviolet absorption ⁸ in a rigid glass (at 77° κ).

			-		Ų	0	•	,
Compound	Method		Ground-state fundamentals					5
1,5-Dideutero	Phosphorescence		500			1112	1386	1541
1,5-Dibromo	Phosphorescence		494			1126	1366	1536
2,6-Dibromo	Phosphorescence		504	796	986	1066	1360	1539
1-Deutero-2-methyl	Raman	445	516	766	944		1377	
2-Deutero-1-methyl	Raman	448	517		940		1379	
1-Deutero-2-ethyl-	Raman	460			943		1377	
1-Deutero-4-ethyl	Raman	479	516		949		1376	
1-Deutero-4-methyl	Raman	474	519		974		1372	
			Excited-state fundamentals					
2,6-Dimethyl	Ultraviolet		490	710	900			1420

resulting from ultraviolet absorption studies 6 in a rigid glass at $77^{\circ}\kappa$ has the following range of values:

α-F 433, α-Cl 444, α-Br 420, α-I 428 cm.⁻¹ β-F 455, β-Cl 495, β-I 472 cm.⁻¹.

and the value of naphthalene 6 itself is 455 cm.⁻¹.

Another relevant feature to the vibrational frequency assignments in the radicals is the intensity of the (0,0) band. As regards the discharge spectra from the benzyl and o-, m-, and p-xylyl radicals the (0,0) band was the most intense,² and this is also the case for the ultraviolet absorption spectrum ⁷ of 2,6-dimethylnaphthalene in 3-methylpentane glass at 77° κ . In the phosphorescence work on the monosubstituted and disubstituted naphthalenes the (0,0) is one of the most intense.⁸ It follows that if a vibrational frequency analysis—based on fundamentals which are of the order of those in the disubstituted naphthalenes—is carried out, then it is preferable that the emergent (0,0) band should be one of the most intense. As Table 1 shows, this proves to be the case since the (0,0) bands are in six cases the most intense. The most characteristic ground-state fundamental is one of the order 450—500 cm.⁻¹, and in the case of the 1, 3-, 1,6-, and 1,7-radicals the corresponding $\omega' \sim 380-450$ cm.⁻¹ is observed.

From these reasonably successful analyses on seven systems it follows that the emitters contain naphthalene ring systems. By analogy with the n-dialkylbenzene decompositions under similar discharge conditions it would seem that the breakdown is of the type:

For the symmetrically substituted radicals from 1,5-, 2,3-, and 2,6-dimethylnaphthalenes the identity of such an emitter is straightforward. However, for the 1,2-, 1,3-, 1,6-, and 1,7-isomers there are two possible fission products, as shown.

Bearing in mind the quoted accuracy in the vibrational frequencies determination a certain pattern in the vibrational frequencies appears to exist. If the frequencies of the 2,3- and 2,6-radicals may be taken as characterising a β -CH₂ radical and that of the 1,5-radical as typical of an α -CH₂, then the radicals may be classified as in Table 3.

This determination of the α -CH₂• and β -CH₂• positions must be regarded as somewhat speculative for the 1,3-, 1,6-, 1,7-, and 1,2-radicals; also there is no reliable precedent

- ⁷ McConnell and Tunnicliff, J. Chem. Phys., 1955, 23, 927.
- ⁸ Ferguson, Iredale, and Taylor, J., 1954, 3160.

TABLE 3.

Tentative classification of radicals based on vibrational frequency similarities.

	α-CI	H2• radio	cals			
Substituent positions	ω	ω″				
1,3	447	518		967	1308	
1,5		520	701	981	1286	
	β-CI	H ₂ • radie	c al s			
2.3		450		934	1388	
2.6		424	767		1412	
1.6	382	419			1329	
1.7	412	432		904	1333	1547
1.2		465		925	1366	

regarding such variability in the vibrational frequency values in the limited number of polyatomic free radicals previously examined. Nevertheless, it would seem that a definite difference does exist between the α - and β -radicals, particularly for the total symmetric frequency in the 420—520 cm.⁻¹ region. One difference between the α -CH₂• and β -CH₂• radicals is the close proximity of the *peri*-hydrogen in the former radical and its possible steric effect on the degree of planarity of the CH₂• group and the consequent extent of conjugation of the unpaired electron with the π -electrons of the ring.

We are indebted to the D.S.I.R. for an apparatus grant and for an award (A. T. W.). We thank Mr. A. Clarke for technical assistance.

(S. W.) CHEMISTRY DEPARTMENT, COLLEGE OF ADVANCED TECHNOLOGY, BIRMINGHAM. (A. T. W.) PURDUE UNIVERSITY, LAFAYETTE,

INDIANA, U.S.A.

[Received, November 5th, 1963.]